





# UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD

CLASS - 7

Question Paper Code : 40109

## KEY

|     |       |         | -       | _     | 6  | -  | •  | •  | 40 |
|-----|-------|---------|---------|-------|----|----|----|----|----|
| 1   | 2     | 3       | 4       | 5     | 6  | 7  | 8  | 9  | 10 |
| А   | A     | D       | А       | А     | D  | С  | А  | В  | А  |
| 11  | 12    | 13      | 14      | 15    | 16 | 17 | 18 | 19 | 20 |
| А   | D     | В       | D       | С     | А  | С  | С  | С  | С  |
| 21  | 22    | 23      | 24      | 25    | 26 | 27 | 28 | 29 | 30 |
| D   | C     | D       | В       | В     | С  | С  | А  | В  | В  |
| 31  | 32    | 33      | 34      | 35    | 36 | 37 | 38 | 39 | 40 |
| B,C | A,B,D | A,B,C,D | A,B,C,D | A,B,D | D  | D  | В  | С  | D  |
| 41  | 42    | 43      | 44      | 45    | 46 | 47 | 48 | 49 | 50 |
| С   | D     | С       | В       | D     | С  | D  | D  | В  | А  |

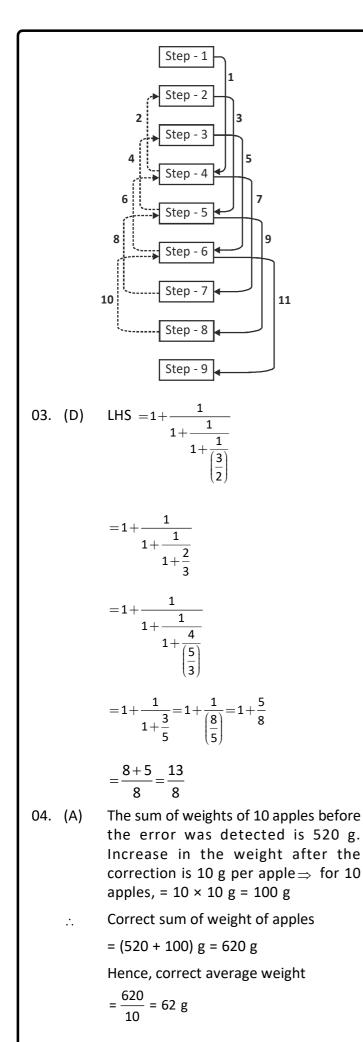
## SOLUTIONS

#### MATHEMATICS - 1

01. (A) Use BODMAS rule & simplify

$$\frac{124 \times 4}{\downarrow} -3 + \frac{118 \div 2}{\downarrow}$$
  
= 496 - 3 + 59  
= 493 + 59 = 552

02. (A) Here jumping downwards is taken as positive and jumping upwards is taken as negative


Also given that the monkey is sitting on the first step

$$1 + (+3) + (-2) + (+3) + (-2) + (+3) + (-2) + (+3) + (-2) + (+3)+(-2) + (+3)$$

= 1+3-2+3-2+3-2+3-2+3-2+3

is 11 steps

(or)



05. (A) Required probability 
$$=\frac{1}{6}$$
  
06. (D) Given  $\frac{3p+2}{5} - \frac{4p-3}{7} + \frac{p-1}{35} = 4$   
Multiplying by 35, we have  
 $7(3p+2) -5(4p-3) + (p-1) = 140$   
 $\Rightarrow 21p + 14 - 20p + 15 + p - 1 = 140$   
 $\Rightarrow 2p + 28 = 140 \Rightarrow 2p = 112$   
 $\therefore p = 56$   
07. (C) Let the first prize be Rs.  $x$   
 $\therefore$  Second prize = Rs.  $\frac{3}{4}x$   
Third prize = Rs.  $\frac{1}{2} \times \frac{3x}{4} = \text{Rs.} \frac{3x}{8}$   
 $\therefore \text{Rs.} \left(x + \frac{3x}{4} + \frac{3x}{8}\right) = \text{Rs.} 2250$   
 $\Rightarrow \text{Rs.} \frac{17x}{8} = \text{Rs.} 2550$   
 $\Rightarrow x = \text{Rs.} 1200$   
08. (A) Clearly  $p = 360^\circ - 270^\circ = 90^\circ$   
(Angles at a point)  
Through C, draw a line / parallel to AB  
and DE  
 $A \xrightarrow{q} \xrightarrow{p} \xrightarrow{p} 2270^\circ - 1} E$   
 $\therefore 42^\circ + x = 180^\circ \text{ and } q + y = 180^\circ$   
 $\Rightarrow x = 180^\circ - 42^\circ = 180^\circ$   
 $\therefore y = 270^\circ - 138^\circ = 132^\circ$   
 $\therefore q = 180^\circ - 132^\circ = 48^\circ$   
Alternate Method:  
 $p = 90^\circ, p = a + b = 90^\circ$   
 $a = 42^\circ$  (Since  $l \parallel DE$ , alternate angles)  
 $\Rightarrow b = 90^\circ - 42^\circ = 48^\circ$   
 $q = b = 48^\circ$  (Alternate angles)

09. (B) Let the required number be x. Then,  

$$\frac{-13}{6} + x = -5 \Rightarrow x = -5 - \left(\frac{-13}{6}\right)$$

$$= \frac{-13}{6} + \frac{13}{6} \qquad \left[ \because - \left(\frac{-13}{6}\right) = \frac{13}{6} \right]$$

$$= \frac{-3}{1} + \frac{13}{6} \qquad \left[ \because - \left(\frac{-13}{6}\right) = \frac{13}{6} \right]$$

$$= \frac{-3}{1} + \frac{13}{6} \qquad \left[ \because - \left(\frac{-13}{6}\right) = \frac{13}{6} \right]$$

$$= \frac{-30 + 13}{6} = \frac{-17}{6}$$

$$= \frac{-30 + 13}{6} = \frac{-17}{6}$$

$$= \frac{-30 + 13}{6} = \frac{-17}{6}$$

$$\therefore \quad \text{Required difference} = \frac{-13}{6} - \left(\frac{-17}{6}\right)$$

$$= \frac{-13 + 17}{6} = \frac{4}{6} = \frac{2}{3}$$
10. (A) B = A + 20% of A
  
= A +  $\frac{20}{100}$  A
  
B =  $\frac{5A + A}{5} = \frac{6A}{5}$ 

$$C = \frac{6A - 3A}{5} = \frac{3A}{5}$$

$$= \frac{3}{5} \times \frac{20}{20}$$
 A
  
C =  $\frac{6A - 3A}{5} = \frac{3A}{5}$ 

$$= \frac{3}{5} \times \frac{20}{20}$$
 A
  
C =  $\frac{60}{100}$  A = 60% A
  
11. (A) Let the profit % be x
  
Given  $\frac{3}{4}$  of CP  $\frac{(100 + x)}{100} = CP \frac{(100 - 10)}{100}$ 
  

$$\Rightarrow \frac{3}{4} \times CP \times \frac{(100 + x)}{100} = CP \frac{(100 - 10)}{100}$$

$$x = 20\%$$
Webite : www.unfieddouncl.com
  
2. (250 - x) × 5 × 2 + (2x - x) = 275
$$\Rightarrow x = Rs. 625$$
16. (A) 933 - 3 × 992 × 100 + 3 × 99 × 1002 - 100
$$= -1$$
Webite : www.unfieddouncl.com

3

1002 -

17. (C) Given ∠AOB + ∠BOC + ∠COD = 180°  
[∴ straight angle]  
11x + 12x + 13x = 180°  
36x = 180°  

$$x = \frac{180°}{36} = 5°$$
  
∴ ∠AOC = 11x + 12x = 23x = 23 × 5° = 115°  
18. (C)  $\frac{-5}{16} = -0.3125$   
 $\frac{-13}{24} = -0.546$   
 $\frac{-3}{4} = -0.75$   
 $\frac{-7}{12} = -0.58.$   
∴  $\frac{-3}{4}$  is the smallest rational number  
19. (C)  $2^{2025} - 2^{2024} - 2^{2023} + 2^{2022} \times 2^{1} + 2^{2022} \times 1 = K \times 2^{2022}$   
 $\Rightarrow 2^{2022} (2^3 - 2^2 - 2 + 1) = k \times 2^{2022}$   
 $\Rightarrow 2^{2022} (2^3 - 2^2 - 2 + 1) = k \times 2^{2022}$   
 $k = 3$   
20. (C) AB = 6 m, CD = 11 m, AC = 12 m  
Now, DE = (CD - CE) = (11 - 6) m = 5 m  
 $\int_{A}^{B} \int_{12m}^{B} \int_{C}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{6m}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{C}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{C}^{5m} \int_{0}^{5m} \int_{0}^{5m} \int_{0}^{5m} \int_{0}^{5m} \int_{12m}^{5m} \int_{C}^{5m} \int_{0}^{5m} \int_{$ 

(D) Given 
$$\angle AOD + \angle DOB = 180^{\circ}$$
  
 $2x + 3x = 180^{\circ}$   
 $x = 36^{\circ}$   
Given  $\angle DOB = 3x$   
 $\Rightarrow \angle DOG + \angle EOB = 3x$   
 $2z + z = 3x$   
 $3z = 3x$   
 $\therefore z = x$   
 $\therefore x = z = 36^{\circ}$   
Given  $\angle AOD = 2x$   
 $\Rightarrow \angle AOC + \angle COD = 2x$ .  
 $\frac{y}{4} + \frac{3y}{4} = 2x$   
 $y = 2x$   
 $\therefore \angle COE = \angle COD + \angle DOE = \frac{3y}{4} + 2z = \frac{3}{4}(2x) + 2x$   
 $= \frac{3x}{2} + 2x = \frac{7x}{2}$   
 $= \frac{7 \times 36^{\circ}}{2} = 126^{\circ}$   
(C) Given AB = BD  
 $\Rightarrow \angle BAD = \angle BDA = 35^{\circ}$   
 $\angle b = \angle BDA + \angle BAD$   
 $\Rightarrow \angle b = 35^{\circ} + 35^{\circ} = 70^{\circ}$   
Also given AC = CE  
 $\Rightarrow \angle CAE = \angle CEA = 46^{\circ}$ 

Using exterior angle property,  

$$\Rightarrow \angle c = \angle CAE + \angle CEA$$

$$= 46^{\circ} + 46^{\circ} = 92^{\circ}$$
In AABC,  $\angle a + \angle b + \angle c = 180^{\circ}$   
(Since sum of angles in a triangle is 180°)  

$$\Rightarrow \angle a = 180^{\circ} - \angle b - \angle c$$

$$\Rightarrow \angle a = 180^{\circ} - 70^{\circ} - 92^{\circ} = 18^{\circ}$$

$$\therefore \angle a = 18^{\circ} - \angle b - 2c$$

$$= 3 - 9 - 7 - 13 + \frac{3 - 13}{20}$$
23. (D) Let 'x' be the other number.Let 'x' be the  
other number  $x \times \frac{-4}{3} = \frac{-9}{16}$ 

$$\Rightarrow x = \frac{-9/16}{-163} = \frac{-9}{-16} = \frac{-2}{10} + \frac{7 - 13}{10} + \frac{3 - 13}{20} = \frac{13}{20}$$
24. (B)  $a + b - c = a + b - c + c - c$   

$$= 2 + b + c - 2c$$

$$= 2 + b + c - 2c$$

$$= 2 + c - 2c$$

$$= 2 (s - c)$$
25. (B) Let the sum be P  
Let the number of times it gets multiplied  
be  $x$   
 $T = 10$  years  
 $R = 20\% p.a$   
We know that,  $A = P\left(1 + \frac{TR}{100}\right)$ 

$$\Rightarrow xP = P\left(1 + \frac{10 \times 20}{100}\right)$$

$$\Rightarrow xP = P\left(1 + \frac{10 \times 20}{100}\right)$$

$$\Rightarrow xP = 3P$$

$$\Rightarrow x = 3$$
26. (C) LHS  $= \frac{a^{2}}{2} - \frac{b^{3}}{3} + \frac{c^{2}}{3} - \frac{3b^{3}}{4} + \frac{4c^{2}}{5}$ 

$$+ a^{2} - b^{3} - c^{3}$$

$$= \left(\frac{a^{2}}{2} + \frac{2a^{2}}{3} + a^{2}\right) + \left(-\frac{b^{2}}{3} - \frac{3b^{3}}{4} + \frac{4c^{2}}{5}$$

$$+ a^{2} - b^{3} - c^{3}$$

$$= \left(\frac{a^{2}}{2} + \frac{2a^{2}}{3} + a^{2}\right) + \left(-\frac{b^{2}}{3} - \frac{3b^{2}}{4} - b^{3}\right)$$

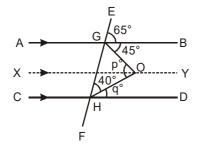
$$= \left(\frac{a^{2}}{2} + \frac{2a^{2}}{3} + a^{2}\right) + \left(-\frac{b^{2}}{3} - \frac{3b^{3}}{4} + \frac{4c^{2}}{5}$$

$$= (2x \times x) \operatorname{cm}^{2} = (2x) \operatorname{cm}^{3}$$
But, area of the parallelogram = 648 \operatorname{cm}^{3}
$$\therefore 2x^{2} = 648 \Rightarrow x^{2} = 324 \Rightarrow x = 18$$
Hence, the base of the parallelogram is  $2 \ge 18 = 36 \operatorname{cm}^{3}$ 

### MATHEMATICS - 2

31. (B, C) The lines AB and EF intersect at G.  $\therefore \angle ECG = \angle AGF$ 

(Vertically opposite angles)


- $\Rightarrow \angle AGF = 65^{\circ}$
- Since AB||CD
- $\angle$ GHD =  $\angle$ AGH =  $\angle$ AGF

$$\Rightarrow \angle GHD = 65^\circ$$

(Since  $\angle AGH = 65^{\circ}$ )

 $\Rightarrow \angle GHO + \angle OHD = 65^{\circ}$ 

$$\Rightarrow$$
 q° = 65° – 40° = 25°



Draw a line XY through 'O' parallel to AB and CD. Since XY || AB,  $\angle$ XOG =  $\angle$ BGO  $\Rightarrow \angle$ XOG = 45° ( $\therefore$  Alternate angles) and XY || CD $\Rightarrow \angle$ XOH =  $\angle$ OHD

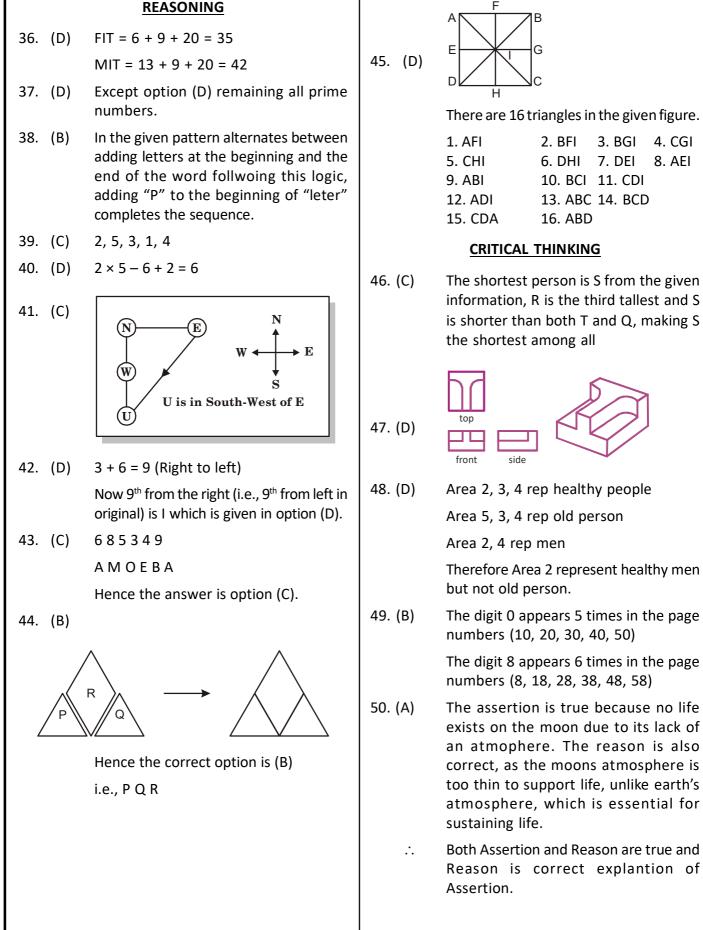
 $\Rightarrow \angle XOH = 25^{\circ}$ 

But p° = ∠XOG + ∠XOH

 $\Rightarrow$  p = 45° + 25° = 70°

∴ p = 70° & q = 25°

## 32. (A,B,D)


Option (A)  $(0.1)^3 = 0.001$   $(0.1)^2 = 0.01$   $\therefore (0.1)^3 < (0.1)^2$   $\therefore Option 'A' is correct.$ Option (B)  $4^{1026} = (2^2)^{1026}$   $= 2^{2 \times 1026}$   $= 2^{2052}$  $\therefore 2^{2024} < 2^{2052}$ 

Option (C) i = 1 $1^{2025} = 1$  $\therefore$ i < 1<sup>2025</sup> is false Option (D)  $9^{50} = (3^2)^{50} = 3^{100}$  $3^{123} > 9^{50}$ Hence Option 'D' is correct. 33. (A,B,C,D) Area of a rectangle =  $16 \times 9 \text{ cm}^2$  = 144 cm<sup>2</sup> Area of a square = 12cm  $\times$  12cm = 144 cm<sup>2</sup> Area of u triangle =  $\frac{1}{2} \times 36 \times 8$ cm<sup>2</sup> = 144 cm<sup>2</sup> Area of a square =  $\frac{1}{2} \times d^2 = \frac{1}{2} \times (12\sqrt{2})^2$  $=\frac{1}{2} \times 12 \times 12 \times 2 \text{ cm}^2 = 144 \text{ cm}^2$ 34. (A, B, C, D) Option 'A' : 4 cm + 1.5 cm = 5.5 cm > 5 cm Option 'B' : 4 cm + 5 cm = 9 cm > 8 cm Option 'C' : 4 cm + 4 cm = 8 cm > 5 cm Option 'D' : 4 cm + 5 cm = 9 cm > 5 cm 35. (A, B, D)  $\frac{-4}{9} = -0.444$  and  $\frac{-7}{17} = -0.41$  $\frac{-6}{17}$  = -0.35 does n't lie between -0.44 and -0.411  $\frac{-9}{20}$  = -0.45 does n't lies between -0.44 and -0.411  $\frac{-135}{311} = -0.434$ 

lies between -0.44 and -0.411

 $\frac{-2}{5} = -0.4$  does not lie between -0.44 and - 0.41

### REASONING



3. BGI

4. CGI

8. AEI